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The method has been used on transmission Kikuchi 
line patterns from the cubic crystal natural spinel, 
MgA1204. An enlarged section of one of the plates, 
containing some of the intersections used, is shown in 
Fig.2. 

From the lattice constant of a0(26°C)=8.0800 A 
(Wyckoff, 1965), the wavelength associated with the 
100 kV switch on a JEM-7 electron microscope is de- 
termined. The results are given in Table 1. 

The uncertainty in zIR3/R 3 can for small ratios be 
allowed to be as high as 10%. Still the uncertainty in 
the calculated 2 is less than 0.3% which is the estimated 

maximum uncertainty in a single determination. The 
deviation from the mean value gives a relative uncer- 
tainty in this quantity of less than 0.1%. 
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An extension of the methods of Wells (Acta Cryst. (1960). 13, 722) is described for calculating the 
direction cosines of incident and emergent rays for general camera geometry and for any standard 
setting of the crystal. 

Wells (1960) gives methods for determining the direc- 
tions of the incident and emergent rays for equi- 
inclination, normal-beam and precession geometry, 
with the crystal in a standard setting, with c as the 
principal axis. This paper generalizes his results (a) for 
any camera geometry, (b) for alternative settings of 
the crystal. Wells's notation is used throughout. 

(a) Generalization for any camera geometry 
In particular this covers data recorded by the inclined- 

beam oscillation technique (Milledge, 1963) and has 
two aspects 

(1) to allow for l taking negative values, 
(2) to calculate the sign of the direction cosine 

( c o s / Z E ) ,  between the principal axis and the emer- 
gent ray, when this angle lies in the range 0-z~, rather 
than 0 -  n/2 (equi-inclination) or re/2- rc (preces- 
sion). 

Wells defines a set of orthogonal axes with OX= a*, 
O Y in the a * - b *  plane and OZ on the same side of 
the X Y  plane as c* (Fig. 1). Then, considering a reflex- 
ion hkl (point P), he examines the lth layer of the 
reciprocal lattice [Fig.2(a)] and derives the lengths 
and angles: 

L1 =/c* sin o92, 

L2 and ( 0  3 (determined by the cell constants), 0 )  4 (a 
function of h and k only) and 

(05 = ~-I -  (04 - -  (03 , 

which determine 

Z 3 = (L~ + L22 - 2LxL2 cos cos)x/2 . 

He does not consider the consequence of L2 being zero, 
i.e. P lying on c*. In this case 0.) 4 and (o5 are both in- 
determinate, but L3---L1 and c06= (02, o97 =093. If L3 is 
also zero the reciprocal lattice point lies on OZ, and 
can never be recorded properly by photographic means. 
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Fig. 1. The reciprocal lattice showing the angles and lengths 
referred to in the text (from Wells, 1960). 
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Further,  the length OP is 2 sin 0 and so 

sin o96 = L3/2 sin 0, 

cos 096 = (1 - sin 2 0)6)1/2 . 
Then 

sin 0)7 = (L1 sin 0)3 "nt- L2 sin 0)4)/L3 , 

COS 0)7 = (Zl cos 0)3 "[-L2 COS 0)4) /L3 , 

determining the two angles 096 and 0)7 which define OP. 
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Fig.2. The lth layer of the reciprocal lattice. (a) l positive, 
(b) l negative. 

Y 

Fig. 3. The reflexion geometry of the precession camera (from 
Wells, 1960). 

If l is negative, then the - l th layer of the reciprocal 
lattice must be considered [Fig. 2(b)]. 

In this case 0)3 no longer has the same relationship 
to P and c* as before, and the formulae need mod- 
ification: 

L1 = I/c* sin 0)21 , 

(-05----:(.04--0) 3 , 

s i n  (.o 7 : (L2 s i n  0 ) 4 -  L1 s i n  0)3)/L3 , 
cos c07= (L2 cos 094-Li c o s  0 )3 ) /L3  , 

and cos 0)6 is negative: 

COS 0)6 = - - ( 1  - sin 2 (.06) 1/2 . 

To determine the direction cosines of the incident 
and emergent rays, Wells then considers a special 
condition for each camera geometry, but in fact all 
these conditions are equivalent to specifying the angle 
between the principal axis and the incident ray ( / I Z )  
which is constant for a given block of data for all 
methods, including general inclination. Thus the for- 
mulae for precession geometry (when / IZ=lz ,  stated 
explicity) can be used for all cases with the appro- 
priate value o f / 1 Z  as in Table 1. 

The incident ray lies on a small circle about Z and 
its position is given by the intersection of this circle 
with a small circle of radius zc/2-0 about P (Fig. 3). 
There are in general two intersections, unless the re- 
flexion is unobservable, when the two circles do not 
cross. 

These two intersections correspond to different re- 
flexion positions for the normal-beam and general 
inclination method (upper or lower sides of the film); 
for the precession method the two different positions 
record at the same spot on the film and the corrections 
must be averaged; for equi-inclination the two posi- 
tions correspond to exchange of the incident and re- 
flected rays and only one need be considered. 

The sign of l has no effect on Wells's formulae for 
calculating the direction cosines of the incident and 
emergent rays, and in the general case, only the formula 
for /_.ZE must be changed, as his method does not 
give its sign. The angle 0)13 (I1PZ) is given by 

cos o913 = ( cos ~ t -  cos 0)6 sin 0) / s in  0)6 COS 0 ,  

and using its supplement (E1PZ) we have 

cos / Z E =  cos 606 sin 0 -  sin 0) 6 COS 0 COS 6013 

= 2 cos 606 sin 0 -  cos/~. 

This in fact only depends o n / ,  as is required physi- 
cally. 

Method 
Precession 
Equi-inclination 
General inclination 
Normal beam 

Table 1. 

Nature of angle /_ IZ Value 
Precession angle (/~) /t 
Complement of inclination angle (different for each l value) 90-sin -1 (~t/2) 
Complement of inclination angle (p). (Constant for all l values) 90-/t 
90° (constant for all l values) 90 ° 
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The results of the whole calculation are the direction 
cosines of two rays which are treated symmetrically, 
i.e. reflected and reversed incident rays both leaving the 
crystal. 

(b) Alternative settings of  the axes 

If  data have been recorded using only one principal 
axis, it is immaterial whether this is a, b or c, as the 
axes and reflexion indices cart readily be renamed. If 
however data have been recorded using two different 
axes (say b and c) for the same crystal, it is incon- 
venient (and productive of error) to have to define the 
crystal on two different sets of orthogonal axes. It is 
preferable to calculate the ray direction cosines for 
reflexions recorded with b as principal axis ( Z ' - b )  
on the orthogonal axes X'  Y 'Z ' ,  using Wells's formulae 
and then to convert these cosines to those for the same 
rays on the axes X Y Z  (Z= e) used for definition of the 
crystal. 

This may readily be done if the direction cosines of 
X, Y, and Z are known on the axes X'  Y 'Z ' ,  as then 

cos ~ I X =  cos ~ I X '  c o s / X X ' +  c o s / I Y '  c o s / X Y '  
+ c o s / I Z '  cos /_XZ' ,  etc. 

These direction cosines may be determined in the 
following way. Define a set of unit vectors a, b, c along 
a*, b*, c*. Then unit vectors X, Y, Z along X, Y, Z may 
be found in terms of these: 

X = a  
Y = k a + b  
Z = ma + nb + p c .  

a and Y are orthogonal, so 

ka .  a + l b .  a = 0 ,  

and Y is a unit vector, so 

(ka + l b )  2 = 1 , 

i.e. 
k2a. a + 12b. b + 2kla.  b = 1, 

giving 

where 
k=-a.b/D, I=I/D, 

D=[I-(a. b)211/2 , 

for Y on the same side of a as b. 
Similarly, as Z is orthogonal to both a and b we get 

m=[(b, c) (a. b ) - c .  a]/DE 
n =-m/(a. b)-D(c, a)/f(a, b) 
p =D/E 

where 
E = a . b x e .  

If a .  b=0,  the expression for n is indeterminate and 
it is given by 

n=-p(b, c). 

In a similar way the components of the unit vectors 
X' ,Y ' ,Z '  may be found, for whichever permutation is 
required. Then if 

X = ala + a2b + a3c 
and 

X'b = la + b2b + b3c, 

the required cosine /_X 'X '  is given by 

X .  X '=alb la .  a+alb2a,  b+alb3a,  c + . . . ,  

and similarly for the remaining angles. 
These methods have been incorporated in a general 

absorption correction program written in Fortran for 
the Atlas Computer, using the method of De Meule- 
naer & Tompa (1965). 

I would like to thank Dr R.E. Gaskell for the solu- 
tion of the problem outlined in part (b). 
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The general analytic expression is given for the integral reflexion coefficient of X-rays from thick 
ideal absorbing crystals. 

Introduction 

In order to calculate the integral reflexion of X-rays 
from thick ideal crystals in the presence of an absorp- 
tion, one has to utilize, in accord with the Prins method, 

the numerical integration of the well-known formula 
for the reflexion coefficient, in which the absorption 
is taken into account by adding the imaginary terms 
to the atomic scattering amplitudes. However, a simple 
analytic expression of the integral reflexion can be 


